Abstract
Integration of photothermal materials and photocatalysts can effectively improve photocatalytic hydrogen production. However, the synergistic mechanism of photothermal effect and heterojunction still need to be deeply investigated. Herein, Co3O4@ZnIn2S4 (ZIS) core–shell heterojunction was constructed as a photothermal/ photocatalytic integrated system for photocatalytic hydrogen production. The photothermal effect induced by Co3O4 boosts the surface reaction kinetic of hydrogen evolution with an apparent activation energy decrease from 42.0 kJ⋅mol−1 to 33.5 kJ⋅mol−1. The photothermal effect also increases the charge concentrations of Co3O4@ZIS, which ameliorates the conductivity of Co3O4@ZIS and thus benefits to charge transfer. In addition, a p-n junction forms between Co3O4 and ZIS and provides a built-in electric field to enhance charge separate and prolong charge life time. Benefiting from the synergy of photothermal effect and heterojunction, the photocatalytic performance of Co3O4@ZIS is significantly improved with a highest hydrogen evolution rate of 4515 μmol⋅g−1⋅h−1, which is about 3.5 times higher than that of pure ZIS. This work offers a full perspective to understand the photothermal/photocatalytic integrated conception for solar hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.