Abstract

Photocatalytic production of hydrogen by water splitting is a promising pathway for the conversion of solar energy into chemical energy. However, the photocatalytic conversion efficiency is often limited by the sluggish transfer of the photogenerated charge carriers, charge recombination, and subsequent slow catalytic reactions. Herein, we report a highly active noble-metal-free photocatalytic system for hydrogen production in water. The system contains a water-soluble nickel complex as a molecular cocatalyst and zinc sulfide on 1D cadmium sulfide as the heterojunction photocatalyst. The complex can efficiently transport photogenerated electrons and holes over a heterojunction photocatalyst to hamper charge recombination, leading to highly improved catalytic efficiency and durability of a heterojunction photocatalyst- molecular cocatalyst system. The results show that under optimal conditions, the average apparent quantum yield was approximately 58.3 % after 7 h of irradiation with monochromatic 420 nm light. In contrast, the value is only 16.8 % if the molecular cocatalyst is absent. Such a remarkable performance in a molecular cocatalyst-based photocatalytic system without any noble metal loading has, to the best of our knowledge, not been reported to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.