Abstract

Chitosan is an abundant natural polysaccharide that contains a lot of amino and hydroxyl groups. It possesses great potential for biomedical applications owing to its low toxicity, biodegradability and low cost. Herein, a novel chitosan-based fluorescent copolymer (WS-CS-TPA) was designed and synthesized via nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP), water-soluble chitosan (WS-CS) and an aggregation-induced emission (AIE) fluorogen (AIEgen) triphenylamine derivative (TPA-NH2). Under ultrasonic treatment, 1.16 g TPA-NH2 and 1.1 g WS-CS can be conjugated by 0.7 g HCCP at room temperature. The obtained copolymer shows amphiphilic property and could assemble into nanoparticles with size about 100 nm. After self-assembly, TPA-NH2 was aggregated in the core, thus exhibiting superb AIE feature with intense green fluorescence emission in aqueous media. On the other hand, hydrophilic WS-CS was coated on the surface of nanoparticles and endowed their high water dispersibility. Results from preliminary biological assays suggested that WS-CS-TPA can be internalized by cells and exhibits low cytotoxicity, suggesting their great potential for biological imaging and intracellular drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call