Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has been extensively studied for the reductive removal of Cr(VI), but its applicability is limited by agglomeration and unexpected efficiency reduction. In this study, chitin microsphere supported sulfidated nanoscale zero-valent iron (S-nZVI@Chi-M) was prepared by in-situ one-step reduction method and used to remove Cr(VI) from water. Compared to chitin and chitosan powder, Chi-M with nanofibrous structure and large surface area performed best in stabilizing S-nZVI with a Fe0 loading content of 3.01 wt%. The S-nZVI particles were homogeneously distributed on the surface of Chi-M, effectively avoiding agglomeration. Compared with bare nanoparticles and supported nZVI, S-nZVI@Chi-M showed significantly enhanced Cr(VI) removal capacity (924.5 mg Cr(VI) for per gram of effective Fe0). The influences of sulfidation degree, dosages, initial Cr(VI) concentration, pH, DO, humic acid and typical ions on Cr(VI) removal kinetics were further studied. S-nZVI@Chi-M could be recycled for at least 4 times with acceptable reactivity. The mechanism investigation results indicated that the Cr(VI) removal was a complex process of reduction, adsorption and co-precipitation under the synergistic effect of Chi-M and S-nZVI. This work provides new ideas for the continuous fabrication of highly reactive nanoparticles, hopefully expanding the application scope of biomass resources in pollution remediation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have