Abstract

Cell patches are widely used for healing injuries on the surfaces or interfaces of tissues such as those of epidermis and myocardium. Here we report a novel type of porous scaffolds made of poly(d,l-lactic-co-glycolic acid) for fabricating cell patches. The scaffolds have a single layer of spherical pores arranged in a unique hexagonal pattern and are therefore referred to as “scaffolds with a hexagonal array of interconnected pores (SHAIPs)”. SHAIPs contain both uniform pores and interconnecting windows that can facilitate the exchange of biomacromolecules, ensure homogeneous cell seeding, and promote cell migration. As a proof-of-concept demonstration, we have created skeletal muscle patches with a thickness of approximately 150 μm using SHAIPs. The myoblasts seeded in the scaffolds maintained high viability and were able to differentiate into multi-nucleated myotubes. Moreover, neovasculature could efficiently develop into the patches upon subcutaneous implantation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.