Abstract

Self-organized hexagonal pore arrays with a 50–420 nm interpore distance in anodic alumina have been obtained by anodizing aluminum in oxalic, sulfuric, and phosphoric acid solutions. Hexagonally ordered pore arrays with distances as large as 420 nm were obtained under a constant anodic potential in phosphoric acid. By comparison of the ordered pore formation in the three types of electrolyte, it was found that the ordered pore arrays show a polycrystalline structure of a few micrometers in size. The interpore distance increases linearly with anodic potential, and the relationship obtained from disordered porous anodic alumina also fits for periodic pore arrangements. The best ordered periodic arrangements are observed when the volume expansion of the aluminum during oxidation is about 1.4 which is independent of the electrolyte. The formation mechanism of ordered arrays is consistent with a previously proposed mechanical stress model, i.e., the repulsive forces between neighboring pores at the metal/oxide interface promote the formation of hexagonally ordered pores during the oxidation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.