Abstract
Pristine and Ce doped TiO2 nanoparticles were fabricated for toxic pollutants removal from wastewater. Pristine, 2% Ce and 4% Ce doped TiO2 photocatalysts were produced via hydrothermal route. 4% Ce doped TiO2 exhibited 2.41 eV bandgap which is smaller than pure TiO2. The morphology was also investigated and it was established that doping of Ce ions enhanced the surface roughness and reduced the particle size. The surface area was characterized through BET analysis and 4% Ce–TiO2 possess higher surface with large pore diameter which helped the photocatalytic activity. The prepared photocatalysts were investigated on reduction of pollutants from wastewater under visible light. Higher efficiency was obtained for 4% Ce–TiO2 photocatalyst for both model pollutants. The “k” value possessed was also higher for the doped TiO2 catalyst. These analysis reports the optimum level of ceria doping to enhance morphology, surface area and it increased activity than bare TiO2. 4% Ce–TiO2 will be the potential candidate for efficient wastewater management. The 4% Ce doped TiO2 photocatalyst provided 77% and 88% on reducing MB and RhB dyes. The dopant has developed higher surface area, morphology and good recombination rate which reduced the toxic pollutants and changed the wastewater to reuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.