Abstract
ABSTRACTCarbon nanotube field-effect transistors (CNTFETs) were fabricated with metal material (gold) and semiconductor material (bismuth telluride) as the source and drain materials. Highly-purified HiPCO-grown single-walled carbon nanotubes (CNTs) from Carbon Nanotechnologies, Inc. (CNI) were used for the fabrication of CNTFETs. The single-walled carbon nanotubes were ultrasonically dispersed in toluene and dimethylformamide (DMF) with trifluoroacetic acid (TFA), as co-solvent. Dielectrophoresis (DEP) method was used to deposit, align, and assemble carbon nanotubes (CNTs) to bridge the gap between the source and drain of CNTFETs to form the channel. The structure of CNTFET is similar to a conventional field-effect transistor with substrate acting as a back-side gate. Electron-beam evaporation was used to deposit gold and bismuth telluride thin films. Microfabrication techniques such as photolithography, e-beam lithography, and lift-off process were used to define and fabricate the source, drain, and gate of CNTFETs. The gap between the source and drain varied from 800 nm to 3 µm. The drain-source current (IDS) of the fabricated CNTFETs versus the drain-source voltage (VDS) and the gate voltage (VG) was characterized. It was found that in the case of gold (Au) electrodes, the IV curves of CNTFETs clearly show behavior of the CNT (metallic or semiconducting) aligned across the source and drain of CNTFETs, while in the case of bismuth telluride (Bi2Te3) electrodes, the I-V curves are less dependent on the type of CNTs (metallic or semiconducting). The developed carbon nanotube field-effect transistors (CNTFETs) can be a good candidate for the application of nanoelectronics and integrated circuits with a high mobility and fast switching.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have