Abstract
The aim of this study is to introduce natural-based polymers, chitosan and starch, to design a remedial nanocomposite, comprising of cerium oxide nanoparticles and silver nanoparticles, to investigate their effects in accelerating wound healing and in wound microbial load. Cerium oxide nanoparticles synthesized in starch solution added to the colloidal dispersion of synthesized silver nanoparticles in chitosan to make a three-component nanomaterial. Mice were anaesthetized and two parallel full-thickness round wounds were excised under aseptic conditions with the help of sterile dermal biopsy punch. Furthermore, effects of silver-chitosan and silver-cerium-chitosan nanocomposite had evaluated on rate of wound closure and collagen density and on microbial load of wound in full-thickness model. Results showed that both silver chitosan and silver-cerium-chitosan had significant impact on acceleration of wound closure and collagen content and on reduction of wound microbial load in comparison with control group, which was, received no treatments. However, the silver-cerium-chitosan nanocomposite is more potent than silver-chitosan group and control group in wound closure. The wound healing effects of silver-cerium-chitosan nanocomposite are due to unique features of its three components and this nanocomposite promises impressive remedies for clinical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have