Abstract

Developing flexible pressure sensors is of high interest in soft skin and tactile sensing applications. Here we demonstrate a simple approach to fabricating a sensitive resistive pressure sensor using carbon nanotube (CNT) micro-yarns as a pressure sensing element which is constructed on a stretchable acrylic elastomer. The sensor showed a high sensitivity of −0.86 Ω/kPa and a fast response time of 100 ms. Different to the longitudinal piezoresistive effect of micro-yarns, the high pressure sensitivity of the sensor was achieved owing to the compressibility of the micro-yarn in the direction perpendicular to the yarn axis. The sensor was also able to monitor finger pressure in real-time, demonstrating its potential for tactile sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.