Abstract

We fabricated and characterized an ultrahigh voltage (>10kV) p-channel silicon carbide insulated gate bipolar transistor (SiC-IGBT) with high channel mobility. Higher field-effect channel mobility of 13.5 cm2/Vs was achieved by the combination of adopting an n-type base layer with a retrograde doping profile and additional wet re-oxidation annealing (wet-ROA) at 1100°C in the gate oxidation process. The on-state characteristics of the p-channel SiC-IGBT at 200°C showed the low differential specific on-resistance of 24 mΩcm2 at VG = -20 V. The forward blocking voltage of the p-channel SiC-IGBT at 25°C was 10.2 kV a the leakage current density of 1.0 μA/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.