Abstract

Protein-bound uremic toxins (PBUTs), the presence of which in the blood is an important risk factor for the progression of chronic kidney disease (CKD), have not been cleared efficiently via traditional hemodialysis methods until now. In this study, biosafe and efficient nitrogen-containing porous carbon adsorbent (NPCA) beads for the clearance of PBUTs were prepared from porous acrylonitrile/divinylbenzene cross-linked copolymer beads followed by pyrolysis. The resulting NPCA beads were characterized via SEM, XPS and nitrogen adsorption/desorption tests. The results demonstrated that the NPCA beads possessed a mesoporous/microporous hierarchical structure with rich nitrogen functional groups on their surfaces and realized efficient PBUTs adsorption in human plasma. More importantly, the efficacy of PBUTs removal was substantially higher than those of commercial adsorbents that are commonly used in clinical uremia treatments. The NPCA beads also exhibited satisfactory removal efficacy towards middle-molecular-weight uremic toxins. The PBUTs removal mechanism of the NPCA beads is ascribed to effective competition between nitrogen-containing NPCA and proteins for PBUT binding. According to hemocompatibility assays, the NPCA beads possessed satisfactory in vitro hemocompatibility. This nitrogen-containing porous carbon adsorbent is an attractive and promising material for blood purification applications in the treatment of clinical uremia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call