Abstract
We fabricated a new organic-inorganic hybrid superlattice film using molecular layer deposition [MLD] combined with atomic layer deposition [ALD]. In the molecular layer deposition process, polydiacetylene [PDA] layers were grown by repeated sequential adsorption of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet polymerization under a substrate temperature of 100°C. Titanium oxide [TiO2] inorganic layers were deposited at the same temperatures with alternating surface-saturating reactions of titanium tetrachloride and water. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the nanohybrid films. The transmission electron microscopy analysis of the titanium oxide cross-linked polydiacetylene [TiOPDA]-TiO2 thin films confirmed the MLD growth rate and showed that the films are amorphous superlattices. Composition and polymerization of the films were confirmed by infrared spectroscopy. The TiOPDA-TiO2 nanohybrid superlattice films exhibited good thermal and mechanical stabilities.PACS: 81.07.Pr, organic-inorganic hybrid nanostructures; 82.35.-x, polymerization; 81.15.-z, film deposition; 81.15.Gh, chemical vapor deposition (including plasma enhanced CVD, MOCVD, ALD, etc.).
Highlights
Organic-inorganic hybrid superlattice films have an attractive potential for the creation of new types of functional materials by combining organic and inorganic properties
Molecular layer deposition TiOPDA thin films were deposited onto the Si substrates using TiCl4 and HDD
The diacetylene molecules were polymerized by UV irradiation to form a polydiacetylene layer
Summary
Organic-inorganic hybrid superlattice films have an attractive potential for the creation of new types of functional materials by combining organic and inorganic properties. We developed two-dimensional polydiacetylene [PDA] with hybrid organic-inorganic structures using molecular layer deposition [MLD] [4]. We report a fabrication of titanium oxide cross-linked polydiacetylene [TiOPDA]-titanium oxide [TiO2] organic-inorganic nanohybrid thin films using the MLD-ALD method. In this MLD process, the PDA organic layers were grown by repeated sequential ligand-exchange reactions of titanium tetrachloride [TiCl4] and 2,4-hexadiyn-1,6-diol [HDD] with UV polymerization. The TiO2 thin films were deposited onto the substrates using TiCl4 (99%; Sigma-Aldrich Corporation, St. Louis, MO, USA) and water as ALD precursors [14]. Molecular layer deposition TiOPDA thin films were deposited onto the Si substrates using TiCl4 and HDD (99%; Sigma-Aldrich Corporation, St. Louis, MO, USA) in the MLD chamber. Specimens for cross-sectional transmission electron microscopy [TEM] studies were prepared by mechanical grinding and polishing (approximately 10-μm thick) followed by Ar-ion milling using a Gatan Precision Ion Polishing System (PIPSTM Model 691, Gatan, Inc., Pleasanton, CA, USA)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.