Abstract

Construction and feature of a nanocomposite modified carbon paste electrode for aluminum(III) ion determination based on N,N′-dipyridoxyl (1,2-cyclohexanediamine) (PYCA) as a novel selector material will be covered by this paper. The optimum composition, Nernstian slope/linear range/detection limit in the forms of calibration graph, response time, utilizable pH range, repeatability and precision of measurements of the aluminum(III) ion using the new fabricated Al3+-CPE was evaluated. The optimal composition which performed over Al+3 ion concentration range 1.0 × 10−8 mol L−1–1.0 × 10−1 mol L−1 with near-Nernstian slope equal 20.9 ± 0.2 mV decade−1 and low detection limit about 5.0 × 10−9 mol L−1, was formed of ionophore (PYCA 3 %), binder (paraffin oil 30 %), modifier [multi-wall carbon nanotubes (MWCNTs) 1 %] & [Nanosilica (NS) 0.5 %], and inert matrix (graphite powder 65.5). The request time to give rise Nernstian response of electrode for concentrations from 1.0 × 10−8 mol L−1 to 1.0 × 10−1 mol L−1 of Al3+ ion solution was estimated about ~6 s. The new Al3+-CPE was applied in pH range 2.0–5.0 with no consequential change in potential response. To verify the selectivity of electrode toward aluminum(III) ion in the presence of different metallic cations, matched potential method was used. The obtain results in analytical applications reflect the excellent ability of this electrode to play the role as endpoint indicator electrode in both titration and direct potentiometric measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call