Abstract

Development of biocompatible and cell-targeting nanomaterials with multimodal therapeutic approach is important to cancer treatment by overcoming its multidrug resistance. Herein, we designed and synthesized a novel multimodal therapeutic nanomaterial from a mussel-derived peptide with good biocompatibility, cell-targeting ability, and self-assembling property. Relying on Fe(III)-catechol coordination and other noncovalent interactions, the mussel-derived peptide can self-assemble to form Fe(III)-DA complexes with intrinsic photothermal and chemodynamic activities in its nanoparticle. Because of the pH-responsive property, the nanoparticle disassembled to release doxorubicin (DOX) and ferric ions under acidic intracellular environment, inducing cellular apoptosis and elevating the cellular oxidative level (ROS) via iron-mediated Fenton reactions. Besides photothermal ablation, the heat generated by Fe(III)-DA complexes from NIR irradiation could increase the DOX-induced antitumor activity, and enhance the efficiency of the Fenton reaction for chemodynamic therapy, realizing synergistic treatment of cancer cells with minimal side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.