Abstract

A nanocomposite of multi-walled carbon nanotubes (MWCNTs) decorated with molybdenum dioxide (MoO2) nanoparticles is fabricated through the reduction of phosphomolybdic acid hydrate on functionalized MWCNTs in a hydrogen–argon (10%) atmosphere in a tube furnace. The MoO2/MWCNTs composite is proposed as an anodic modification material for microbial fuel cells (MFCs). MWCNTs have outstanding physical and chemical peculiarities, with functionalized MWCNTs having substantially large electroactive areas. In addition, combined with the exceptional properties of MoO2 nanoparticles, the synergistic advantages of functionalized MWCNTs and MoO2 nanoparticles give a MoO2/MWCNTs anode a large electroactive area, excellent electronic conductivity, enhanced extracellular electron transfer capacity, and improved nutrient transfer capability. Finally, the power harvesting of an MFC with the MoO2/MWCNTs anode is improved, with the MFC showing long-term repeatability of voltage and current density outputs. This exploratory research advances the fundamental application of anodic modification to MFCs, simultaneously providing valuable guidance for the use of carbon-based transition metal oxide nanomaterials in high-performance MFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call