Abstract
Abstract In order to improve the thermal conductivity and full-fill the gaps between the fiber bundles for three-dimensional four-directional (3D4d) braided SiCf/SiC composites, 500 nm submicron-sized β-SiC particles were introduced into the 3D4d preform by an electrophoretic deposition (EPD) method. ζ-potential of the KD-Ⅱ SiC fibers and the aqueous suspension of the β-SiC particles were analyzed, as well as the efficiency of the deposition. After densified via PIP process, microstructure, three-point bending strength and thermal conductivity of the composite were investigated. The results showed that, SiC particles filled the gaps between the SiC fiber bundles efficiently, and thermal conductivity of the composites fabricated through PIP process assisted by EPD was 2.3 times that of the composites fabricated via PIP only. The bending strength of the EPD-composites was 647.08 ± 69.53 MPa, which decreased to 2/3 of that of the composites manufactured only by PIP, owing to the reduction of fiber volume fraction and the damages to the interface coatings and fibers under the action of the electric field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.