Abstract

Sodium alginate (SA)-based implantable scaffolds with slow-release drugs have become increasingly important in the fields of biomedical and tissue engineering. However, high-molecular-weight SA is difficult to remove from the body due to the lack of SA-degrading enzymes. The very slow degradation properties of SA-based scaffolds limit their applications. Herein, we designed a series of biodegradable oxidized SA (OSA)-based scaffolds through amide bonds, imine bonds and hydrogen bridges between OSA and silk fibroin (SF). SF/OSA-0.4 with a blend ratio of 4/1 was chosen for further polydopamine (PDA) surface modification studies through the optimization of those parameters such as different OSA oxidation degrees, and blend ratios. PDA modified SF/OSA-0.4 (Dopa/SF/OSA-0.4) showed the excellent stability, better stretchable properties, a uniform interconnective porous structure, high thermal stability, a low hemolysis ratio and cytotoxicity. In vitro degradation experiments showed that the degradation rate of SF/OSA was significantly higher than that of SF/SA, but the degradation slowed again after PDA modification. Interestingly, the degradation of Dopa/SF/OSA-0.4 in vivo was significantly faster than that in vitro. Dopa/SF/OSA-0.4 was also more conducive to new tissue growth and collagen bundle formation. Moreover, Dopa/SF/OSA-0.4 improved the absorbability of RhB (model drug) and reduced the sudden release of RhB during the sustained release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call