Abstract
In this study, porous Cu–YSZ cermets with various Cu contents are fabricated and their crystal structure and morphological features are investigated by X-ray diffraction and scanning electron microscopy. Carbon black-containing CuO/Y2O3-stabilized ZrO2 (YSZ) composites exhibit a highly porous structure due to the evolution of CO and CO2 gasses during sintering. The porosity of the CuO/YSZ composites decreases with increases of the sintering temperature and CuO content. Highly porous Cu/YSZ cermets are fabricated by reducing the porous CuO/YSZ composites in (Ar+6% H2) atmosphere. Higher CuO content and higher sintering temperature reduce the porosity of Cu/YSZ cermets after reduction treatment. The microstructure and porosity of Cu/YSZ cermets as an anode material are remarkably affected by the CuO content, sintering temperature, and carbon black content. We believe that the porous Cu/YSZ cermets are a promising anode material for high performance of SOFC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have