Abstract

Transparent lead-free luminescent ceramics K0.47Na0.47Li0.06Nb0.94Bi0.06O3–Eu x (KNNLB:Eu) have been fabricated via hot-press sintering technology. The formation of perovskite KNNLB:Eu ceramics with highly densified microstructure was verified through X-ray diffraction and scanning electron microscopy studies. The transmittance spectra, photoluminescence excitation and emission spectra, dependence of the photoluminescence intensity on Eu3+ doping content as well as the luminescence decay curves were investigated. The KNNLB:Eu ceramics present high transmittance both in the near-infrared and the middle-infrared regions, and can be efficiently excited by near-ultraviolet and blue light to realize strong reddish luminescence. The red emission at around 613 nm is particularly intense, which is attributed to the electric dipole transition 5D0–7F2 of Eu3+. The PL properties are also discussed. The emission peak splitting of 5D0–7F2 transition is observed as a response to the change in crystal environment around Eu3+ in the KNNLB:Eu ceramics. With the novel intrinsic ferroelectric properties of KNN, the KNNLB:Eu ceramics could be promising candidates for multifunctional optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.