Abstract

Abstract GaN and related materials (especially AlGaN) have recently attracted a lot of interest for applications in high power electronics capable of operation at elevated temperatures. Although the growth and processing technology for SiC, the other viable wide bandgap semiconductor material, is more mature, the AlGaInN system offers numerous advantages. These include wider bandgaps, good transport properties, the availability of heterostructures (particularly AlGaN/GaN), the experience base gained by the commercialization of GaN-based laser and light-emitting diodes and the existence of a high growth rate epitaxial method (hydride vapor phase epitaxy) for producing very thick layers or even quasi-substrates. These attributes have led to rapid progress in the realization of a broad range of GaN electronic devices, including heterostructure field effect transistors (HFETs), Schottky and p–i–n rectifiers, heterojunction bipolar transistors (HBTs), bipolar junction transistors (BJTs) and metal-oxide semiconductor field effect transistors (MOSFETs). This review focuses on the development of fabrication processes for these devices and the current state-of-the-art in device performance, for all of these structures. We also detail areas where more work is needed, such as reducing defect densities and purity of epitaxial layers, the need for substrates and improved oxides and insulators, improved p-type doping and contacts and an understanding of the basic growth mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call