Abstract

In this study, a helical triboelectric nanogenerator (H-TENG) based on the helical structure of biodegradable polylactic acid was designed using 3D printing technology to achieve energy acquisition. When the H-TENG is pressed rhythmically with one hand, the output open-circuit voltage, short-circuit current and charge transfer density can reach 395 V, 28 μA and 36 μC/m2 respectively, which can light 300 LEDs in series. By connecting a simple rectifier and selecting a suitable capacitor, the H-TENG can independently and stably power portable electronic products, such as digital watches and calculators. Especially, as an electronic switch, the device enabled a high current amplification through the Darlington transistor circuit. These results demonstrated the potential applications of the H-TENG in biomechanical energy collection, sensing and human-machine interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call