Abstract

Recently, scientists have been facing major obstacles in terms of improving the performances of dielectric materials for triboelectric nanogenerators. The triboelectric nanogenerator (TENG) is one of the first green energy technologies that can convert random mechanical kinetic energy into electricity. The surface charge density of TENGs is a critical factor speeding up their commercialization, so it is important to explore unique methods to increase the surface charge density. The key to obtaining a high-performance TENG is the preparation of dielectric materials with good mechanical properties, thermal stability and output performance. To solve the problem of the low output performance of PI-based triboelectric nanogenerators, we modified PI films by introducing nanomaterials and designed a new type of sandwich-shaped nanocomposite film. Herein, we used polyimide (PI) with ideal mechanical properties, excellent heat resistance and flexibility as the dielectric material, prepared an A-B-A sandwich structure with PI in the outer layer and modified a copper calcium titanate/polyimide (CCTO/PI) storage layer in the middle to improve the output of a TENG electrode. The doping amount of the CCTO was tailored. The results showed that at 8 wt% CCTO content, the electrical output performance was the highest, and the open-circuit voltage of CCTO/PI was 42 V. In the TENG, the open-circuit voltage, short-circuit current and transfer charge of the prepared sandwich-structured film were increased by 607%, 629% and 672% compared to the TENG with the PI thin film, respectively. This study presents a novel strategy of optimizing dielectric materials for triboelectric nano-generators and has great potential for the future development of high output-performance TENGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.