Abstract

In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.