Abstract
Arrays of cobalt nanorods consisting of a number of nanowires have been fabricated by the electrochemical method using an anodic-aluminum oxide (AAO)/mesoporous-silica (SBA-15) composite. Microscopic studies clearly display that each nanorod (with a diameter of ∼200 nm) of the array was consisting of a number of cobalt nanowires which exhibit an average diameter of 3 nm. The observed hysteresis loops measured at room temperature indicate that the magnetic shape anisotropy of cobalt mesostructures, i.e. the parallel and perpendicular squarenesses of 0.5 and 0.1, respectively have been estimated. The maximum value of the coercivity measured perpendicular to the sample axis shows a value of 330 Oe and it was found that the coercivity decreases by increasing the temperature which is possibly caused by thermal disturbance inside the arrays.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have