Abstract

Abstract Anodic aluminum oxide (AAO) has been fabricated in the 0.3 M oxalic acid at voltage range 20-60 V and temperature range of 35-50oC. The resulting nanoporous alumina surfaces were characterized by high resolution scanning electron microscopy, and the images were quantitatively analysed by means of an innovative approach based on fast Fourier transform. The influence of operating anodization voltage and electrolyte temperature on nanopores geometry (pore diameter, interpore distance, porosity, pores density) and arrangement has been studied in details and compared to literature data and theoretical calculations. It was found that independently from the temperature, the best arrangement of the nanopores is for anodic aluminum oxide formed at voltages ranging from 40 to 50 V. Moreover, it was found that pore diameter and interpore distance increase linearly with voltage, what is in line with the literature data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.