Abstract

Reduced graphene oxide (RGO) is an electrically conductive carbon-based nanomaterial that has recently attracted attention as a potential electrode for organic electronics. Here we evaluate several solution-based methods for fabricating RGO bottom-contact (BC) electrodes for organic thin-film transistors (OTFTs), demonstrate functional p- and n-channel devices with such electrodes, and compare their electrical performance with analogous devices containing gold electrodes. We show that the morphology of organic semiconductor films deposited on RGO electrodes is similar to that observed in the channel region of the devices and that devices fabricated with RGO electrodes have lower contact resistances compared to those fabricated with gold contacts. Although the conductivity of RGO is poor compared to that of gold, RGO is still an enticing electrode material for organic electronic devices possibly owing to the retention of desirable morphological features, lower contact resistance, lower cost, and solution processability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call