Abstract

Regeneration of skin wound is a challenging process since functional and architectural restoration of the damaged skin tissue is an arduous task. The use of springing up biomaterials with nano-topographic and bio-mimicking characteristics resembling natural skin's extra cellular matrix (ECM) would be a favorable approach to regenerate such an injured skin tissue. In this study an attempt has been carried out to design and develop sulphonated polyether ether ketone (SPEEK) nanofibrous scaffold to explore its role on skin cell proliferation potential. 2h-SPEEK portrayed the highest proliferative potential for HaCaT keratinocytes and fibroblasts. It was aimed for the tailored release of bio-actives from the spatiotemporally designed Aloe vera incorporated 2h-SPEEK nanoscaffold to accelerate the skin wound regeneration. FTIR, EDX and XRD analyses revealed the effective incorporation of Aloe vera in the electrospun nanofibers. SEM analysis revealed the nano-topographical morphology with highly porous, dense and interconnected fibrous structures mimicking the skin ECM. The regulated delivery of Aloe vera demonstrated the biocompatibility of the nanofibrous scaffold in skin keratinocytes (HaCaT) and fibroblasts (3T3) cells through in vitro analysis proving its non-toxic properties. Further, the fabricated nanoscaffolds exhibited excellent anti-microbial efficacy towards the tested human skin pathogenic microbes. The results of in vivo studies in Wistar rat model exhibited scar-less wound healing with complete wound closure. Thus, this nanofiber based drug delivery system implicitly acts as a skin like ECM, bio-mimicking the topographical and chemical cues of the natural skin tissues paving way for a complete regeneration and integration of the injured area strengthening the functional restoration of insulted cells around the wound area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call