Abstract

Development of functional biological substitutes for skin tissue engineering applications has observed several advancements over the past few decades. In this regard, intelligent extracellular matrix (ECM) mimetic scaffolds have recently evolved as a promising paradigm by presenting instructive cues directing cell-matrix communication, tissue remodeling and homeostasis. However, orchestring multitude attributes of skin ECM yet presents an intriguing challenge to be addressed. In the present work, we have developed an in vitro skin scaffold by coating a bio-mimetic ECM cue κ-carrageenan on electrospun nanofibers for the first time. κ-Carrageenan, a natural sulfated algal polysaccharide exhibits close similarity with native glucosaminoglycans (GAGs) of skin ECM. On the other hand, electrospun nanofibers resemble the 3D nano-topographic architecture of ECM. In the coated form, κ-carrageenan could provide the biochemical cues necessary for cellular functions on the nanofibrous scaffold, thereby mimicking the native 3D microenvironment of skin ECM. The nano-architecture of the electrospun matrix is retained in the fabricated scaffold even after coating with κ-carrageenan. The developed biomimetic scaffold significantly supplements adhesion, growth, infiltration, survival and proliferation of fibroblasts. Furthermore, enhanced gene expression and excessive secretion of collagen proteins by fibroblasts communicate a conducive skin ECM micro-environment formation on the algal polysaccharide coated nanofibrous scaffold. Taken together, these findings present a simple yet effective strategy for the fabrication of ECM mimetic scaffold for promising skin tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call