Abstract

Supercapacitors are a promising candidate for the regenerative braking system due to their inherent fast charging and high-current/temperature tolerance capabilities. However, most supercapacitors suffer from high weight to capacitance ratio, which averts the use of supercapacitors in regenerative braking in electric vehicles. This research proposes a new lightweight supercapacitor electrode fabrication, which consists of networking conductive layers of graphene dispersion and activated carbon in porous graphite felt using conductive ink. The composite electrode showed a specific capacitance up to 170 F g−1, or 13 F g−1 from a completed device in type III deep eutectic solvent electrolyte, which gave the starting voltage of 2.3 V. The submersion fabrication alleviated the fabrication compare to brush method and production time was reduced to under 3 min of physical preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.