Abstract

Flexible optoelectronic structures are required in a wide range of applications. Large scale modified silicone-embedded n-GaP nanowire arrays of a record 6 µm thin membranes were studied. A homogeneous silicone encapsulation was enabled by G-coating using a heavy-load centrifuge. The synthesized graft-copolymers of polydimethylsiloxane (PDMS) and polystyrene demonstrated two times lower adhesion to Si compared to standard PDMS, allowing 3 square inch area high quality silicone/nanowire membrane mechanical release, preserving the growth Si substrate for a further re-use after chemical cleaning. The 90% transparent single-walled carbon nanotubes electrical contacts to the embedded n-GaP nanowires demonstrated mechanical and electrical stability. The presented methods can be used for the fabrication of large scale flexible inorganic optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.