Abstract

Porous cellulose acetate (CA) films by breath figure (BF) incorporated with capric acid as form-stable phase change materials (PCMs) were fabricated and characterized for storing and retrieving thermal energy. Effects of different solvents, CA concentration and film thickness on morphology, microstructure and thermal energy storage property of formstable PCMs were investigated by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer and differential scanning calorimetry (DSC), respectively. The results indicated that the prepared CA films were porous with DMF, acetone, and dichloromethane (DCM) as the solvents, and capric acid absorption capacity was as high as 86.9, 75.0 and 82.2 % with the specific surface area of 4.8, 2.8 and 1.8 m2/g. Moreover, porous CA film with 5 % CA concentration and 0.5 mm thickness prepared by using DMF as solvent had larger specific surface area and higher thermal energy storage properties. The fabricated form-stable PCMs could well maintain their PCM characteristics and demonstrated great temperature regulation ability and had potential applications in building energy conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.