Abstract

Polymer materials have the advantages of a low Young's modulus and low-cost preparation process. In this paper, a polymer-based optical waveguide pressure sensor based on a Bragg structure is proposed. The change in the Bragg wavelength in the output spectrum of the waveguide Bragg grating (WBG) is used to linearly characterize the change in pressure acting on the device. The polymer-based WBG was developed through a polymer film preparation process, and the experimental results show that the output signal of the device has a sensitivity of 1.275 nm/kPa with a measurement range of 0-12 kPa and an accuracy of 1 kPa. The experimental results indicate that the device already perfectly responds to a pulse signal. It has significant potential application value in medical diagnostics and health testing, such as blood pressure monitoring, sleep quality monitoring, and tactile sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.