Abstract

Purpose – The aim of this study was to fabricate polyimide (PI)/Al2O3 composite films via surface modification and ion exchange techniques, and examine their properties. Design/methodology/approach – The method involves hydrolyzing the PI film double surface layers in an aqueous potassium hydroxide (KOH) solution and incorporating aluminium ions (Al3+) into the hydrolyzed layers of the PI film via subsequent ion exchange, followed by a treatment of the Al3+-loaded PI films with an aqueous ammonia solution, which leads to the formation of Al(OH)3 in the surface-modified layers. After a final thermal annealing treatment in ambient air, the Al(OH)3 decomposes to Al2O3, and forms composite layers on both surfaces of the re-imidized PI film. Findings – The PI/Al2O3 composite film obtained with a 6 hours of KOH treatment exhibited excellent thermal stability, good mechanical properties and better electric breakdown strength and corona-resistance properties than the pristine PI film. Practical implications – The method for obtaining the composite films in this paper is worth consideration, but additional research will be needed. Furthermore, this method is of general importance for the fabrication of composite PI films with tailored properties. Originality/value – This study showed that surface modification and ion-exchange techniques are powerful methodologies for the fabrication of PI/Al2O3 composite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.