Abstract

Recently, W-class photonic-crystal surface-emitting lasers (PCSELs) with both a single spectrum and narrow spot beam pattern are reported. These highly coherent PCSEL properties cause a highly bright laser light that is useful for various applications. To improve the PCSEL output power, it is important to enlarge the emitting area to reduce the heat generation effect. However, multi-mode oscillation occurs in a broad emitting area because the difference in the threshold gain between the fundamental and higher modes becomes narrower as the emitting area is broadened. In this work, we fabricate PCSELs with double-hole lattice points that decrease the optical confinement to prevent multi-mode oscillation. The fabricated device, consisting of an AlGaAs/InGaAs material system designed to be oscillated at a wavelength of 940nm, has an emitting area of 300 × 300 μm 2 . In a square lattice photonic crystal whose lattice period equals the lasing wavelength embedded in PCSELs, the distance between the centers of the double hole is set to one quarter of the lasing wavelength to decrease in-plane coupling caused by interference. We confirm that this device is oscillated at the Γ point of band edge A in the photonic band structure. The peak power is more than 5 W under pulse operation at 10 A. The device has a narrow beam divergence of less than 1° and single lobe spectrum in spite of the broad emitting area, so these double-hole lattice points are an effective structure to improve the PCSEL output power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.