Abstract

p-Type tin monoxide (SnO) thin films with high c-axis preferred orientation have been fabricated on quartz substrate via electron-beam evaporation at 280°C. Subsequently, rapid thermal annealing (RTA) was performed in N2 atmosphere at 400°C to 800°C. Their structural, chemical, optical, and electrical properties were investigated by x-ray diffraction analysis, ultraviolet–visible spectroscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Hall-effect measurements. The c-axis-oriented films of Sn-rich SnO presented excellent thermal stability up to RTA at 700°C. Both the crystallization and the hole Hall mobility were enhanced with increasing RTA temperature, with Hall mobility of 16 cm2 V−1 s−1 being obtained after RTA at 700°C. It was considered that the presence of defects and low scattering from grain boundaries contributed to this high Hall mobility. RTA annealing temperature above 700°C induced chemical reaction between SnO and the quartz substrate, with a change of the film to amorphous state with Sn4+ formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.