Abstract
In this paper ZnO nanorods and nanodots (with and without a SiO2 buffer layer) were grown on p-Si, forming p–n heterojunctions. The nanorod devices showed no visible electroluminescence (EL) emission but showed rectifying behavior. Covering around 60% of the length of the nanorods with PMMA produced an ideality factor of 3.91±0.11 together with a reverse saturation current of 6.53±4.2×10-8A. Up to two orders of magnitude rectification was observed for the current at bias -3 and 3V. The nanodot devices showed EL emission under forward bias conditions. It seems that the buffer layer increased both the stability and efficiency of the devices, since the buffer layer device could operate at larger applied voltage and showed EL emission under reverse bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.