Abstract

We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, optical modeling, and characterization of these filters. We investigate two polyimide base aerogel formulations and the effects of loading them with diamond scattering particles of varying sizes and relative densities. We describe a model for the filters’ behavior using a combination of Maxwell Garnett and Mie scattering techniques. We present optical characterization results for diamond-loaded aerogel filters with cutoff frequencies (50% transmittance) ranging between 2.5 and 15 THz, and confirm that the measured spectral performance is in agreement with our optical models. We also measure the filters’ refractive indices in the microwave and report findings in agreement with Maxwell Garnett model predictions (typically n<1.08).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.