Abstract

Refractive index (RI) matching is a unique way of making clear emulsions to meet market trends. However, RI matching has not been sufficiently investigated in terms of physical principles and methodologies. Snell's law (n2 sin r2= n1 sin r1) is applicable to cosmetic emulsions. When oil phase and water phase have equal RI (n2 = n1) values, light will not bend as it strikes obliquely at the emulsion interface. Instead, light is transmitted through the emulsion without refraction, which produces clarity. Theoretical RI values in solution can be calculated with summation of the product of the weight percentage and refractive index of each ingredient (RI(mix) = [W1 x n1 + W2 x n2 + W3 x n3 + + Wn x nn]Wtau). Oil-phase RI values are normally at 1.4 or higher. Glycols are used to adjust the water phase RI, since they typically have larger RI values than water. Noticeable deviations from calculated RI values are seen in experimentally prepared solutions. Three basic deviation types are observed: negative, positive, and slightly negative or positive, which can occur in glycol aqueous solutions at different concentrations. The deviations are attributed to changes in molecular interaction between molecules in solution, which can lead to changes in specific gravity. Negative RI deviation corresponds to a decrease in specific gravity, and positive RI deviation corresponds to an increase in specific gravity. RI values will deviate from calculated values since an increase or decrease in specific gravity leads to a change in optical density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call