Abstract

Fabrication method is one of the essential factors which directly affect on the properties of scaffold. Several techniques have been well established to fabricate nanofibrous scaffolds such as electrospinning. However, preparing a three-dimensional (3-D) interconnected macro-pore scaffold essential for transporting the cell metabolites and nutrients is difficult using the electrospinning method. The main aim of this study was developing a highly porous scaffold by poly (L-lactic acid) (PLLA)/chitosan blend using liquid-liquid phase separation (LLPS) technique, a fast and cost-benefit method, in order to use in nerve tissue engineering. In addition, the effect of different polymeric concentrations on morphology, mechanical properties, hydrophilicity, in vitro degradation rate and pH alteration of the scaffolds were evaluated. Moreover, cell attachment, cell viability and cell proliferation of scaffolds as candidates for nerve tissue engineering was investigated. PLLA/chitosan blend not only had desirable structural properties, porosity, hydrophilicity, mechanical properties, degradation rate and pH alteration but also provided a favorable environment for attachment, viability, and proliferation of human neuroblastoma cells, exhibiting significant potential for nerve tissue engineering applications. However, the polymeric concentration in blend fabrication had influence on both characteristics and cell responses. It concluded that PLLA/chitosan nanofibrous 3-D scaffold fabricated by LLPS method as a suitable candidate for nerve tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.