Abstract

The feasibility of using InGaN/GaN multiple-quantum-well light-emitting diode arrays (LED arrays) as photodiodes (PDs) is investigated experimentally in addition to their light emitting function. Two discrete LED arrays are produced from one 4 × 4 LED array with a parallel-connected pixel configuration. Such compact designs are useful for light emission or detection at the transmitting/receiving terminals of optical wireless communication systems. Despite 4 × 2 LED arrays achieving a light output power of 67.4 mW at 250 mA, they exhibit an optical responsivity (detectivity) of 0.183 A/W (1.61 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm Hz <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> W <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ) under ultraviolet light illumination (λ = 380 nm) at zero bias. For 4 × 2 LED arrays, the presence of an appreciable ultraviolet light response, together with a high 3-dB bandwidth (~8 MHz) for modulated light detection, allowed us to build a 15 Mbit/s directed optical link with these LEDs functioning as both the optical transmitter and the receiver. Finally, the unitary LED array-based optical link is capable of real-time transmission of digital audio signals (data rate = 6 Mbit/s) at a propagation distance of 100 cm in free space even though some of the constituent pixels are inactive for light detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call