Abstract
Microelectromechanical systems (MEMS)-type double helix chip-level electrical interconnect structures are fabricated and characterized in this paper. Due to their springlike structure, double helix interconnects have the potential to provide large mechanical compliance to compensate for nonidealities, such as nonplanarity and thermal expansion mismatch between silicon chips and substrates. A double helix configuration provides for structures with a high volumetric density of conductor for enhanced current carrying capability. The fabrication process is compatible with wafer-level fabrication and packaging. Instead of using solder to form semipermanent interconnections, the double helix interconnects use pressure to make electrical connection and provide sufficiently low resistance (~35 ± 15 mΩ). Large arrays of double helix structures have been fabricated and characterized with excellent yield. The mechanical and electrical models of the structures are presented. Reworkability tests were performed and the structures show a consistent resistance over 50 remating cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.