Abstract

Conducting polyvinyl alcohol (PVA) nanofibers with diameters ranging from 100nm to 300nm were fabricated by an electrospinning method from spinning dopes of the dissolved PVA polymer in aqueous dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Using a chemical cross-linking agent, glutaraldehyde (GA), water insoluble conducting PVA nanofibers were obtained through an in-situ crosslinking of PVA polymer during electrospinning. The cross-linked conducting nanofibers maintained fiber morphology after a soaking in water and exhibited high conductivity (4–8Sm−1). To create PVA nanofibers that were both conducting and had a persistent negative surface charge, Poly(methyl vinyl ether-alt-maleic anhydride) (PVMA) polymer was added to the spinning dope. Organic conducting PVA nanofibers with or without negatively charged surfaces will potentionally be used to create highly sensitive, real-time electrically based sensors for biological and chemical species and for radiation detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.