Abstract

In order to enforce the mechanical strength and antibacterial ability of biofilm and explore the underlying mechanism, sodium lignosulfonate (SL) and ε-polylysine (ε-PL) were introduced to fabricate the composite film of konjac glucomannan (KGM)/SL/ε-PL in the present study. According to our previous method, 1% (w/v) of KGM was the optimal concentration for the film preparation method, on the basis of which the amount of SL and ε-PL were screened by mechanical properties enforcement of film. The structure, mechanical performance and thermal stability of the film were characterized by SEM, FTIR, TGA and tensile strength tests. The optimized composite film was comprised of KGM 1% (w/v), SL 0.2% (w/v), and ε-PL 0.375% (w/v). The tensile strength (105.97 ± 4.58 MPa, p < 0.05) and elongation at break (95.71 ± 5.02%, p < 0.05) of the KGM/SL/ε-PL composite film was greatly improved compared with that of KGM. Meanwhile, the thermal stability and antibacterial property of film were also enhanced by the presence of SL and ε-PL. In co-culturation mode, the KGM/SL/ε-PL composite film showed good inhibitory effect on Escherichia coli (22.50 ± 0.31 mm, p < 0.05) and Staphylococcus aureus (19.69 ± 0.36 mm, p < 0.05) by determining the inhibition zone diameter. It was revealed that KGM/SL/ε-PL composite film shows enhanced mechanical strength and reliable antibacterial activities and it could be a potential candidate in the field of food packaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.