Abstract

Nanofibers composed of cellulose acetate (CA) and montmorillonite (MMT) were prepared by electrospinning method. MMT was first dispersed in water and mixed with an acetic acid solution of CA. The viscosity and conductivity of the CA/MMT solutions with different MMT contents were measured to compare with those of the CA solution. The CA/MMT solutions were electrospun to fabricate the CA/MMT composite nanofibers. The morphology, thermal stability, and crystalline and mechanical properties of the composite nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and tensile test. The average diameters of the CA/MMT composite nanofibers obtained by electrospinning 18 wt% CA/MMT solutions in a mixed acetic acid/water (75/25, w/w) solvent ranged from 150~350 nm. The nanofiber diameter decreased with increasing MMT content. TEM indicated the coexistence of CA nanofibers. The CA/MMT composite nanofibers showed improved tensile strength compared to the CA nanofiber due to the physical protective barriers of the silicate clay layers. MMT could be incorporated into the CA nanofibers resulting in about 400% improvement in tensile strength for the CA sample containing 5 wt% MMT.

Highlights

  • Electrospinning is a unique technique for producing nonwoven fabrics of nanofibers, which exhibit high specific surface area and porosity on account of their potential applications, such as sensors [1, 2], filtration [3,4,5], membranes, tissue engineering, and drug delivery [6,7,8,9]

  • Field emission transmission electron microscopy (TEM) (FE-TEM, FEI, Tecnai F30 Super-twin operated at an accelerating voltage of 200∼300 kV with a Gatan imaging filter (GIF) model 2002) was performed to confirm existence of the MMT layers within the nanofibers that were directly electrospun onto carbon-coated TEM grid with a 300 mesh

  • Han et al reported that cellulose acetate (CA) nanofibers could be electrospun continuously using a mixed acetic acid/water solvent and the optimum concentration of CA for long uniform nanofibers was 17 wt% [10]

Read more

Summary

Introduction

Electrospinning is a unique technique for producing nonwoven fabrics of nanofibers, which exhibit high specific surface area and porosity on account of their potential applications, such as sensors [1, 2], filtration [3,4,5], membranes, tissue engineering, and drug delivery [6,7,8,9]. The CA nanocomposites reinforced with nanoclay (montmorillonite, MMT) can be quite promising due to the remarkable improvement in the material properties of polymer composites with only a low percentage of MMT added. Nanocomposites of CA and MMT have been prepared into film- or paper-shaped composite structures by conventional compounding methods, such as solution casting [16], melt processing [17], and dispersion method [18], and mechanical properties of CA/MMT composites have been further improved by the addition of compatibilizer or plasticizer [19, 20]. Nanofiber-nanoclay composites of CA and MMT have unique advantages compared to conventional CA/MMT nanocomposites, because of higher surface area and biodegradability. The effect of electrospinning parameters on the distribution of MMT in the CA nanofibers was described

Materials and Methods
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call