Abstract

Silver (Ag) intermediate transparent and conducting TiON/Ag/TiON (TAgT) films were deposited by RF and DC magnetron sputtering on glass substrates. Changes in the optoelectrical properties of the films were investigated as a function of Ag thickness. The thickness of the Ag film varied from 5 to 20 nm. In XRD patterns, the TAgT films showed characteristic diffraction peaks for Ag (111), (200), (220), and (311) planes, while peaks for TiON were not observed. Thus, it was concluded that the Ag interlayer did not affect the crystalline structures of the upper TiON films. However, electrical resistivity was dependent on the thickness of the Ag interlayer. For TiON 50/Ag 20/TiON 30 nm films, electrical resistivity decreased to as low as 3.3 × 10 − 4 Ωcm. The optical transmittance was also influenced by the Ag interlayer. As the Ag thickness increased, the optical transmittance decreased to as low as 45% for TiON 50/Ag 20/TiON 30 nm films. From observed figure of merit and work function, it is concluded that a TAgT film with a 5 nm-thick Ag interlayer is a good candidate for use as a transparent electrode in OLEDs and flat panel displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call