Abstract

This paper presents the fabrication, characterization and modeling of a wideband MEMS electrostatic energy harvester utilizing nonlinear springs. The experimental results show that the vibration energy harvester displays a strong softening spring effect. For narrow band vibration, the energy harvester exhibits a widening bandwidth during frequency down-sweeps. For increasing levels of broadband random noise vibration, the energy harvester displays a broadening bandwidth response. Furthermore, the vibration energy harvester with softening springs not only increases the bandwidth, but also harvests more output power than a linear energy harvester at a sufficient level of broadband random vibration. At a broadband random vibration of 7.0 × 10−4 g2 Hz−1, we found that the bandwidth increases by more than 13 times and the average harvesting output power increases by 68% compared to that of a linear vibration energy harvester. Numerical analysis confirmed that the softening springs are responsible for the band broadening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.