Abstract

GaAs-AlGaAs rib-waveguide graded-index separate-confinement heterostructure (GRINSCH) single-quantum-well (SQW) tunable distributed Bragg reflector (DBR) laser diodes were fabricated by EB lithography, ion implantation, and two-step metalorganic vapor phase epitaxy (MOVPE) growth. Active and passive waveguides were monolithically integrated by the compositional disordering of quantum-well heterostructures using silicon ion implantation. First-order gratings and rib waveguides were adopted with EB lithography to improve lasing characteristics, and they have wide application to photonic integrated circuits (PICs). Waveguide losses of partially disordered GRINSCH-SQW passive waveguides were as low as 4.4 cm/sup -1/ at the lasing wavelength. A narrow linewidth as low as 560 kHz and a frequency tuning of more than 2.9 THz were obtained. The results show that this fabrication process is useful for PICs.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call