Abstract

Polymers of lactic and glycolic acid are attractive candidates to fabricate devides to transplant cells and engineer new tissues. These polymers are biocompatible, and exhibit a wide range of erosion times and mechanical properties. This manuscript describes the fabrication and characterization, in vitro and in vivo, of hollow, tubular devices from porous films of various polymers of this family. Porous films of these polymers were formed using a particulate leaching technique, and sealed around Teflon cylinders to form hollow tubular devices. The erosion rate of devices was controlled by the specific polymer utilized for fabrication, and ranged from months to years. Devices fabricated from a 50/50 copolymer of D,L-lactic acid and glycolic acid were completely eroded by 2 months, while devices fabricated from a homopolymer of L-lactic acid showed little mass loss after 1 year. Erosion times for devices fabricated from the other polymers [poly-(D,L-lactic acid) and a 85/15 copolymer] were between these two extremes. Devices were capable of resisting significant compressional forces (150 raN) in vitro, and the compression resistance was controlled by the polymer utilized to fabricate the devices. The ability of the devices to maintain their structure after implantation into the mesentery or omentum of laboratory rats was also dependent of the specific polymer utilized to fabricate the device. These results indicate that it is possible to fabricate tubular devices for tissue engineering applications that exhibit a wide range of erosion rates and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.