Abstract

Nuevos e innovadores materiales para aplicaciones biomédicas y farmacéuticas deben considerar factores como la composición y estabilidad térmica para establecer las propiedades fisicoquímicas adecuadas para sistemas eficientes de liberación controlada de fármacos. En este estudio, hidrogeles de carboximetilcelulosa (CMC) son preparados incorporando nanopartículas de dióxido de sílice (SiO2) previamente modificadas con grupos de aminas primarias (-NH2), buscando evaluar la composición química y mejorar la estabilidad térmica. El método de carbodiimidas es utilizado para promover el entrecruzamiento de la CMC con la formación de enlaces amidas de grupos carboxilo (C=O) activados y su posterior enlace con grupos -NH2. La información morfológica muestra nanopartículas de SiO2 dispersas con superficie lisa, forma regular, y diámetro promedio de 104 nm. La composición del material y la estabilidad térmica son evaluadas mediante espectroscopia infrarroja de la transformada de Fourier y análisis termogravimétrico para establecer una perspectiva preliminar de hidrogeles funcionales para aplicaciones biomédicas y farmacéuticas. La formación de enlaces amidas es confirmado indicando entrecruzamiento exitoso de la estructura de la CMC con nanopartículas de SiO2-NH2, atribuido a la activación de los grupos C=O y su fuerte afinidad a los grupos -NH2. Esta interacción mejoró la estabilidad térmica de los hidrogeles entrecruzados de CMC-SiO2 hasta 469°C siendo el último evento de descomposición, resaltando la contribución de una mayor presencia de nanopartículas de SiO2-NH2. Estos resultados sugieren un adecuado proceso de fabricación de hidrogeles entrecruzados de CMC-SiO2 como material novedoso con propiedades fisicoquímicas prometedoras, contribuyendo en estos campos en sistemas de administración controlada de fármacos.

Highlights

  • In recent years, nanotechnology has been focusing on the development of innovative nanomaterials with exceptional physicochemical properties for a wide number of applications, outstanding the biomedicine and pharmaceutical fields(Tang et al, 2020).Among these nanomaterials, the silica dioxide (SiO2) nanoparticles are extensively explored due to the advantages offered by their biocompatibility, chemical, and enzymatical stability, reactive surface area, environmentally friendly, and good cost-effectiveness (Abeer et al, 2020)

  • This study reported the synthesis and amine-functionalization of SiO2 nanoparticles for the incorporation in crosslinked Carboxymethyl cellulose (CMC) hydrogels via the carbodiimide crosslinker chemistry

  • The primary NH2 groups grated on the surface of the SiO2 nanoparticles provided high affinity and strong interaction with the activated C=O groups from the carboxylic acid in the CMC structure

Read more

Summary

Introduction

Nanotechnology has been focusing on the development of innovative nanomaterials with exceptional physicochemical properties for a wide number of applications, outstanding the biomedicine and pharmaceutical fields(Tang et al, 2020).Among these nanomaterials, the silica dioxide (SiO2) nanoparticles are extensively explored due to the advantages offered by their biocompatibility, chemical, and enzymatical stability, reactive surface area, environmentally friendly, and good cost-effectiveness (Abeer et al, 2020). The presence of silanol (Si-OH) groups on the surface after the synthesis represent a challenge, reducing the advantages of using this type of nanoparticles (Sepulveda et al, 2020). Carboxymethyl cellulose (CMC) is a promising example of these explored biopolymers and has proven to be efficient in therapeutic systems for biomedical and pharmaceutical applications (Rao et al, 2018). These CMC biopolymers have been explored in industries and academia for their promising physicochemical properties, including hydrophilicity, non-toxicity, and pH-sensitivity (Javanbakht & Shaabani, 2019). The ability to hydrogel-forming using CMC is mainly attributed to the ionic nature and a large amount of carboxyl (C=O)and hydroxyl (-OH)groups in the structure (Jeong, Kim, Kim, & Jung, 2020).a few but important limitations, such as the mechanical, thermal, and chemical stability, need to be addressed in the CMC hydrogels to compete with synthetic and non-biodegradable polymers(Shahbazi, Ahmadi, Seif, & Rajabzadeh, 2016)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.